Quantifying intrinsic chemical reactivity of molecular structural features for protein binding and reactive toxicity, using the MOSES chemoinformatics system

نویسندگان

  • Johannes Schwöbel
  • Bruno Bienfait
  • Johann Gasteiger
  • Thomas Kleinöder
  • Jörg Marusczyk
  • Oliver Sacher
  • Christof H. Schwab
  • Aleksey Tarkhov
  • Lothar Terfloth
  • Mark T. D. Cronin
چکیده

Covalent binding of xenobiotic compounds to endogenous biomolecular sites, e.g. protein residues, leads to potentially irreversible toxic effects such as enhanced acute toxicity or skin sensitization [1]. This mechanistic knowledge provides the basis for the in silico prediction of these toxicities, as required by the EU REACH legislation and the EU Cosmetics Directive. A general toxicity prediction can be based on three consecutive steps [2]: (1.) Identification of a potential reactive protein binding mechanism via a set of molecular structural features. Those structural features can be encoded by the Chemical Subgraph Representation Markup Language (CSRML), that supports a flexible annotation of meta information, including physicochemical properties as annotations. (2.) Confirmation and quantification of (bio)chemical reactivity. The potential for a chemical to be reactive can be captured by mechanistically based QSAR models. This intrinsic reactivity is calculated rapidly by descriptors of the chemoinformatics platform Molecular Structure Encoding System (MOSES) [3]. It represents electronic, steric and resonance effects in chemical structures. The performances obtained by these reactivity models are close to time-consuming quantum chemical reactivity calculations, e.g., se = 0.44 versus 0.40 for glutathione adduct formation via Michael addition, comparing predicted values to an experimental reactivity dataset [1]. (3.) Establishing a relationship between calculated reactivity and toxicity. The predicted intrinsic reactivity values were linked to the computational prediction for different modes of toxic action, with good correlations between predicted and in vitro toxicity (up to r=0.86). The combined use of structural information and computed reactivity could assist in the non-animal based risk assessment of chemicals for regulatory purposes and in the application of integrated testing strategies (ITS). The research has received funding from the EU FP7 COSMOS Project (grant agreement n° 266835) and financing from COLIPA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Cloning, Characterization, and Expression of Cuc m 2, a Major Allergen in Cucumis melo

Background: Several studies reported the clinical features of IgE-mediated hypersensitivity after ingestion of melon. Melon allergy is a common IgE-mediated fruit allergy in Iran. This prompted us to investigate immunochemical and molecular properties of the major allergen in melon fruit, to compare the IgE-binding capacity of the natural protein with the recombinant allergen, and to determine ...

متن کامل

Investigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation

The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

Structural insights into the effects of charge-reversal substitutions at the surface of horseradish peroxidase

Horseradish peroxidase (HRP), has gained significant interests in biotechnology, especially in biosensor field and diagnostic test kits. Hence, its solvent-exposed lysine residues 174, 232, and 241 have been frequently modified with the aim of improving its stability and catalytic efficiency. In this computational study, we investigated the effects of Lys-to-Glu substitutions on HRP structure t...

متن کامل

A First-Principles Study on Interaction between Carbon Nanotubes (10,10) and Gallates Derivatives as Vehicles for Drug Delivery

First principles calculations were carried out for investigation the novel 7-hydroxycoumarinyl gallates derivatives in gas and liquid phases using density functional theory (DFT) method. Computational chemistry simulations were carried out to compare calculated quantum chemical parameters for gallates derivatives. All calculations were performed using DMol3 code which is based on DFT. The Doubl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012